Navigationsweiche Anfang

Navigationsweiche Ende

Lehrstuhl für Allgemeine Elektrotechnik und Theoretische Nachrichtentechnik

Prof. Dr.- Ing. Anton Kummert


  • SiSy Klausur am 23. März 2021
    Die Informationen zu den Standorten, Sitzplatzverteilung und weitere Hinweise sind allen... [mehr]
  • TNT-Klausur am 15. März 2021
    Die Informationen zu der TNT-Klausur am 15. März 2021, wie Standorte, Sitzplatzverteilung und... [mehr]
  • Urkunde über Patenterteilung
    Urkunde über die Erteilung des Patentes Nr. 11 2012 003 630 Verfahren, Anordnung und... [mehr]
zum Archiv ->

Dr.-Ing. Farzin Ghorban



Raum: FE 1.05
Telefon: +49 (0)202 439 1810
E-Mail: farzingrz{at}



Farzin Ghorban; Narges Milani; Daniel Schugk; Lutz Roese-Koerner; Yu Su; Dennis Müller; Anton Kummert
Conditional multichannel generative adversarial networks with an application to traffic signs representation learning
Progress in Artificial Intelligence, 8
April 2018

Zusammenfassung: Generative adversarial networks (GANs) are known to produce photorealistic representations. However, we show in this study that this is only valid when the input channels come from a regular RGB camera sensor. In order to alleviate this shortcoming, we propose a general solution to which we refer to as multichannel GANs (MCGANs). In contrast to the existing approaches, MCGANs can process multiple channels with different textures and resolutions. This is achieved by using known concepts in deep learning such as weight sharing and specially separated convolutions. The proposed pipeline enables particular kernels to learn low-level characteristics from the different channels without the need for exhaustive hyper-parameter tuning. We demonstrate the improved representational ability of the framework on traffic sign samples that are captured by a camera with a so-called red-clear-clear-clear pixel topology. Furthermore, we extend our solution by applying the concept of conditions, that offers a whole spectrum of new features, especially for the generation of traffic signs. Throughout this paper, we further discuss relevant applications for the generated synthetic data.

Farzin Ghorban; Javier Marin; Yu Su; Alessandro Colombo; Anton Kummert
Aggregated channels network for real-time pedestrian detection
, Seite 54.
April 2018
Farzin Ghorban; Yu Su; Mirko Meuter; Anton Kummert
Insatiate boosted forest: Towards data exploitation in object detection
2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP) , Seite 331 - 338.
November 2017
Export als: